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Abstract: This study was aimed at determining the eff ects of topiramate (TPM – a second-generation antiepileptic drug) 
administered alone and in combination with SIB-1893 (a selective non-competitive metabotropic glutamate subtype 
5 [mGlu5] receptor antagonist) on body temperature in freely moving rats. Temperature was monitored using 
programmed microchips, implanted subcutaneously in Wistar rats, at several time intervals: 0, 5, 10, 20, 30, 45, 60, 
90, 120, 180, and 240 min after intraperitoneal administration of TPM, SIB-1893, and their combination. Statistical 
evaluation of data with two-way ANOVA with repeated measures of time revealed that SIB-1893 at a dose of 30 mg/kg, 
signifi cantly decreased the body temperature in rats, at times ranging from 90-240 min after drug administration. In 
contrast, TPM at doses of 5 and 10 mg/kg, administered alone and TPM (10 mg/kg) in combination with SIB-1893 (30 
mg/kg), did not signifi cantly alter the body temperature in freely moving rats. Based on this preclinical study, one 
can conclude that TPM administered alone and in combination with SIB-1893 had no eff ect on body temperature in 
rats up to 240 min after intraperitoneal administration of the drugs. 
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INTRODUCTION

Experimental evidence indicates that excitatory amino acids 
are involved in thermoregulation. It has been documented that 
N-methyl-D-aspartic acid (NMDA) increased temperature 
in rats [11], whereas some NMDA receptor antagonists, such 
as MK-801 and (±)-2-amino-5-phosphopentanoic acid ((±)-
AP-5), reduced this increase [12]. In contrast, alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 
kainic acid (KA) exerted a biphasic eff ect on body temperature 
of experimental animals: short-lasting hypothermia followed 
by hyperthermia [21]. Likewise, some AMPA/KA receptor 
antagonists, such as NBQX, PNQX, and GYKI 52466, lowered 
the body temperature in experimental animals and produced 
hypothermia [10, 17, 18]. 

With regards to metabotropic (mGlu1–mGlu8) glutamate 
receptors, it has been reported that the selective mGlu1 receptor 
antagonist – BAY 36-7620 induced a mild hypothermia in 
experimental rats [5]. Additionally, it has been found that 
MPEP, a selective non-competitive mGlu5 receptor antagonist, 
signifi cantly decreased temperature in rats [8]. In another 
study, MPEP and 2 other selective non-competitive mGlu5 
receptor antagonists (SIB-1893 and SIB-1757) have been 
reported to have no impact on body temperature in mice [2]. 
On the other hand, it has been reported that SIB-1893, in a 
dose-dependent manner, reduced body temperature in freely 
moving rats [3, 16]. 

Post-marketing reports clearly indicate that topiramate 
(TPM – a second-generation antiepileptic drug [AED]) evoked 

hypothermia in patients receiving valproate (VPA – a classical 
AED). It has been documented that hypothermia was reported 
either following the addition of TPM to an existing regimen 
of VPA or an increase in the TPM daily dose in patients on 
well-tolerated VPA therapy [14]. 

Considering the facts that SIB-1893 reduced body 
temperature in freely moving rats and that TPM enhanced the 
risk of hypothermia associated with VPA therapy in patients, 
it was of pivotal importance to evaluate the eff ects of TPM 
administered alone and in combination with SIB-1893 on 
body temperature in freely moving rats. 

MATERIAL AND METHODS 

Animals. Experiments were performed on adult male 
Wistar rats weighing 220-260 g. The animals were purchased 
from a licensed breeder (Dr. T. Górzkowska, Warsaw, Poland). 
The animals were kept in colony cages with free access to 
food and tap water, under standardized housing conditions 
(12 h of a light-dark cycle, stable temperature of 22 ± 1ºC, 
relative humidity 55 ± 5%). After 7 days of adaptation to 
laboratory conditions, the animals were randomly assigned 
to experimental groups consisting of 8 rats per group. All 
tests were performed between 08:00-15:00. Procedures 
involving animals and their care were conducted in accordance 
with the European Communities Council Directive of 24 
November 1986 (86/609/EEC) and Polish legislation on 
animal experimentation. Additionally, all eff orts were made 
to minimize animal suff ering and to use only the number 
of animals necessary to produce reliable scientifi c data. The 
experimental protocols and procedures described in this study 
were approved by the First Local Ethics Committee at the 
Medical University in Lublin. 
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Drugs. SIB-1893 [(E)-2-methyl-6-(2-phenylethynyl)-
pyridine] (Tocris Cookson Ltd., Bristol, UK), and TPM 
(Topamax®, Cilag AG, Schaff hausen, Switzerland) were 
suspended in a 1% solution of Tween 80 (Sigma, St. Louis, 
MO, USA) in 0.9% saline and administered intraperitoneally 
(i.p.) in a volume of 5 ml/kg body weight. 

Measurement of body temperature. To prevent the 
eff ects of restraint stress and minimize handling associated 
with measuring of temperature in animals, the ELAMS 
(Electronic Laboratory Animal Monitoring System; BioMedic 
Data Systems Ltd., Seaford, UK – supported by the State 
Committee for Scientifi c Research KBN 6 P05F 022 20) 
was used to measure the body temperature in freely moving 
rats. This system consists of a desktop unit (DAS-5001, a 
portable data acquisition system), a probe attached to the 
desktop, and implantable microchips (IPTT-200; Implantable 
Programmable Temperature Transponder, BioMedic Data 
Systems Ltd, Seaford, UK). The transponders were programmed 
with identifi cation numbers (ID) prior to implantation. The 
IPTTs contain an anti-migration device which immobilizes 
the transponder at the implantation (injection) site. Forty rats 
were subcutaneously (s.c.) implanted with transponders into 
the dorsal fat-pad. The implanted transponders were read by 
placing the probe within a distance of 5 cm and the ELAMS 
read both the temperature and ID of every rat. Animals were 
randomized into 5 groups (each group consisted of 8 rats) and 
administered with the vehicle, SIB-1893 (30 mg/kg), TPM 
(5 mg/kg), TPM (10 mg/kg), and the combination of SIB-1893 
(30 mg/kg) with TPM (10 mg/kg). These drug doses were based 
on the results of our earlier studies [3, 4]. Temperature readings 
were taken repeatedly at various time points as follows: 0, 5, 
10, 15, 20, 30, 45, 60, 90, 120, 180, and 240 min after vehicle 
and drugs’ administration. This experimental procedure has 
been described in detail in our earlier studies [15, 16].

Statistics. To confi rm that the temperature in each group of 
rats was normally distributed we used the D’Agostino-Pearson 
K-squared omnibus normality test and Shapiro-Wilk normality 
test, which are specifi cally designed to detect departures from 
normality. In our study, the D’Agostino-Pearson K-squared 
omnibus normality and Shapiro-Wilk normality tests revealed 
that the temperatures measured in rats receiving vehicle, TPM 
(5 mg/kg), TPM (10 mg/kg), SIB-1893 (30 mg/kg) and the 
combination of SIB-1893 (30 mg/kg) with TPM (10 mg/kg), 
was normally distributed. Subsequently, two-way ANOVA 
with repeated measures of time tested the pattern of time-
course data collected via ELAMS, using drugs as a between-
subject factor, time intervals as a within-subject factor, and 
temperature as a dependent variable. The post-hoc Bonferroni’s 
test was used to compare the temperature of rats administered 
vehicle with those injected with SIB-1893, TPM, and their 
combination. Statistical evaluation of data was performed 
using commercially available GraphPad Prism 4 (GraphPad 
Software Inc., San Diego, CA, USA). Diff erences between the 
respective values were statistically signifi cant at P<0.05.

RESULTS

Two-way ANOVA with repeated measures of time revealed 
that SIB-1893 at a dose of 30 mg/kg signifi cantly reduced 
the body temperature in rats at 90-240 min after the drug 

administration. It was documented that SIB-1893 in the 90 
min of the observation period decreased the temperature 
from 36.03 ± 0.19°C to 35.30 ± 0.16°C (P<0.05; Figure 1). 
Similarly, it was found that SIB-1893 at 120, 180 min, and 
240 min of temperature monitoring decreased the body 
temperature in rats from 36.05 ± 0.19°C to 35.17 ± 0.16°C, 
36.08 ± 0.18°C to 35.08 ± 0.15°C, and from 36.06 ± 0.17°C 
to 35.14 ± 0.15°C, respectively (P<0.05; Figure 1). In contrast, 
TPM administered at doses of 5 and 10 mg/kg for the whole 
time of temperature monitoring did not signifi cantly alter the 
body temperature in rats, compared to the temperature of the 
control (vehicle-treated) animals (Figure 1). The combination 
of TPM (10 mg/kg) with SIB-1893 (30 mg/kg) also produced no 
signifi cant decrease in the body temperature in rats (Figure 1). 
With two-way ANOVA with repeated measures on time it was 
found that the temperature in rats signifi cantly decreased 
along with the time of measurement [F(11,385) = 72.32; 
P<0.0001]. It was noteworthy that the baseline temperature 
in rats measured on “time 0” (prior to injections of TPM, 
SIB-1893, and their combination) did not show variations 
among experimental groups (vehicle, TPM, SIB-1893 and 
their combination). Similarly, the temperature in rats did not 
diff er signifi cantly between the experimental groups at the 
same time of measurements [F(4,385)=0.47; P=0.7544]. The 
time course patterns for experimental groups (vehicle, TPM, 
SIB-1893 and their combination) were signifi cantly diff erent, 
as indicated by two-way ANOVA with repeated measures of 
time, revealing a signifi cant interaction (treatment × time)-
eff ect between experimental groups and time intervals [F 
(44,385) = 7.04; P<0.0001]. 

Figure 1. Eff ect of topiramate (TPM), SIB-1893, and their combination on body 
temperature in rats.
Data are expressed as means of temperature (in °C) ± SE (error bars) of 8 rats. SIB-
1893 (30 mg/kg), TPM (5 mg/kg), TPM (10 mg/kg), the combination of TPM with 
SIB-1893 (SIB + TPM), and the equivalent amount of vehicle were administered i.p. 
at the time “0”, considered as baseline (reference) time. Temperature was measured 
with microchips (implanted s.c. into the dorsal fat-pad of rats) at various time points, 
as follows: 0, 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, and 240 min after injection of 
the drugs or vehicle. The D’Agostino-Pearson K-squared omnibus normality and 
Shapiro-Wilk normality tests revealed that data were normally distributed. Changes 
in temperature related to the treatment and various time intervals were evaluated 
using two-way (treatment × time) ANOVA with repeated measures of time, followed 
by post-hoc comparisons vs. control using Bonferroni’s correction. It is noteworthy 
that each experimental group under the factor ‘treatment’ had diff erent subjects 
(rats), and this grouping factor did not involve any repeated measures. Conversely, 
individual rats within each factor “treatment” had repeated measurements taken 
at all intervals of time. Statistical evaluation of the data with two-way ANOVA 
repeated measures of time, followed by the post-hoc Bonferroni’s test, revealed 
that rats receiving SIB-1893 (30 mg/kg) displayed a signifi cant reduction in body 
temperature at 90, 120, 180, and 240 min post-dose. In contrast, TPM (5 mg/kg), 
TPM (10 mg/kg), and the combination of SIB-1893 (30 mg/kg) with TPM (10 mg/kg), 
displayed no signifi cant changes in body temperature in freely mobile rats. 

*P<0.05 vs. respective control temperature in vehicle-treated animals (Bonferroni’s 
post-hoc test).
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of pH, the modulation of voltage- and receptor-gated ion 
channels [6]; 

– phosphorylation of AMPA/kainate receptors and allosteric 
modulation of channel conductance [1, 19]. 
Thus, it seems that TPM reduces the release of glutamate 

and other excitatory amino acids from synaptic terminals. 
Since the body temperature in rats is controlled by excitatory 
amino acids (including glutamate) in the brain, SIB-1893 as 
a selective non-competitive mGlu5 receptor antagonist, was 
unable to aff ect the decreased concentrations of glutamate 
evoked by TPM. Therefore, SIB-1893 could not signifi cantly 
reduce the body temperature in rats. Although this hypothesis 
could readily explain the observed eff ects of SIB-1893, TPM 
and their combination on body temperature in freely moving 
rats, more advanced neurophysiological and experimental 
studies are required to elucidate the exact eff ects of these 2 
drugs on body temperature. 

In conclusion, the combination of TPM (10 mg/kg) 
with SIB-1893 (30 mg/kg) and TPM administered alone at 
doses of 5 and 10 mg/kg had no signifi cant eff ects on the 
body temperature in freely moving rats up to 240 min after 
dosing. Only the administration of SIB-1893 (30 mg/kg) was 
associated with the reduction in body temperature in 90-240 
min post-dose.
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